A student is carrying out an experiment with a cobalt-60 source of labelled activity 0.3 MBq . She holds the source in tongs 25 cm long for the duration of the experiment which is 6 minutes. Calculate the maximum dose and the maximum dose equivalent that she could receive. (The relevant exposure rate constant is $0.35 \mu \mathrm{~Sv} / \mathrm{MBq} \mathrm{h}$ at 1 m).

Solution:

The maximum dose:
$H=k \times \lambda \times A \times t(1)$, where k is the coefficient, λ is the relevant exposure rate constant, A is the activity of source, t is the time

Of $(1) \Rightarrow \mathrm{H}=4 \times 0.35 \frac{\mu \mathrm{~Sv}}{\mathrm{MBq}} \times 0.3 \mathrm{MBq} \times 360 \mathrm{~s}=151.2 \mu \mathrm{~Sv} \times \mathrm{s}$
The maximum dose equivalent:
$\mathrm{H}_{\mathrm{T}}=\mathrm{k} \times \lambda \times \mathrm{A}(2)$, where k is the coefficient, λ is the relevant exposure rate constant, A is the activity of source

Of (2) $\Rightarrow \mathrm{H}_{\mathrm{T}}=4 \times 0.35 \frac{\mu \mathrm{~Sv}}{\mathrm{MBq}} \times 0.3 \mathrm{MBq}=0.42 \mu \mathrm{~Sv}$
Answer:
151.2 $\mu \mathrm{Sv} \times \mathrm{s}$
$0.42 \mu \mathrm{~Sv}$

