Answer on Question #68388, Physics / Atomic and Nuclear Physics

A student is carrying out an experiment with a cobalt-60 source of labelled activity 0.3 MBq. She holds the source in tongs 25 cm long for the duration of the experiment which is 6 minutes. Calculate the maximum dose and the maximum dose equivalent that she could receive. (The relevant exposure rate constant is $0.35 \,\mu\text{Sv}/\text{MBg}$ h at 1m).

Solution:

The maximum dose:

 $H = k \times \lambda \times A \times t$ (1), where k is the coefficient, λ is the relevant exposure rate constant, A is the activity of source, t is the time

Of (1)
$$\Rightarrow$$
 H = $4 \times 0.35 \frac{\mu Sv}{MBq} \times 0.3 MBq \times 360 s = 151.2 \mu Sv \times s$

The maximum dose equivalent:

 $H_T = k \times \lambda \times A$ (2), where k is the coefficient, λ is the relevant exposure rate constant, A is the activity of source

Of (2)
$$\Rightarrow$$
 H_T = $4 \times 0.35 \frac{\mu S v}{MBq} \times 0.3 MBq = 0.42 \mu S v$

Answer:

 $151.2 \mu Sv \times s$

 $0.42 \mu Sv$