Answer on Question 68385, Physics, Atomic and Nuclear Physics

Question:

A pair of charged conducting plates produces a uniform field of $E_{0}=10859 \mathrm{~N} / \mathrm{C}$ directed to the right, between the plates. The separation of the plates is $L=37 \mathrm{~mm}$. In Figure, an electron $\left(e=-1.6 \cdot 10^{-19} \mathrm{C} ; m_{e}=9.1 \cdot 10^{-31} \mathrm{~kg}\right.$) is projected from the plate A, directly toward the plate B, with an initial velocity of $v_{0}=2.1 \cdot 10^{7} \mathrm{~m} / \mathrm{s}$. The velocity of the electron (expressed in general form as a whole number) as it strikes plate B is what?

Solution:

We can find the velocity of the electron as it strikes the plate B from the work-kinetic energy theorem (the work done by the electric field against the electron is equal to the change in the kinetic energy):

$$
\begin{aligned}
& W=K E_{\text {final }}-K E_{\text {initial }}, \\
& F_{e} L=\frac{1}{2} m_{e} v^{2}-\frac{1}{2} m_{e} v_{0}^{2},
\end{aligned}
$$

here, $F_{e}=e E_{0}$ is the electric force acting on the electron, v_{0} is the initial velocity of the electron, v is the velocity of the electron as it strikes plate B, e is the charge of the electron, m_{e} is the mass of the electron, E_{0} is the magnitude of the uniform electric field, L is the separation of the plates.

Then, we can write:

$$
\begin{gathered}
e E_{0} L=\frac{1}{2} m_{e} v^{2}-\frac{1}{2} m_{e} v_{0}^{2}, \\
2 e E_{0} L=m_{e} v^{2}-m_{e} v_{0}^{2},
\end{gathered}
$$

$$
\begin{gathered}
v^{2}=v_{0}^{2}+\frac{2 e E_{0} L}{m_{e}}, \\
v=\sqrt{v_{0}^{2}+\frac{2 e E_{0} L}{m_{e}}}=\sqrt{\left(2.1 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\frac{2 \cdot\left(-1.6 \cdot 10^{-19} \mathrm{C}\right) \cdot 10859 \frac{\mathrm{~N}}{\mathrm{C}} \cdot 0.037 \mathrm{~m}}{9.1 \cdot 10^{-31} \mathrm{~kg}}} \\
=1.73 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Answer:

$$
v=1.73 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer provided by https://www.AssignmentExpert.com

