Answer on Question 68331, Physics, Mechanics | Relativity

Question:

If you launch a ball up in the air at $50 \mathrm{~m} / \mathrm{s}$ how many seconds will it go up in the air before it starts to fall down?

Solution:

We can find how many seconds the ball needs to go up in the air before it starts to fall down from the kinematic equation:

$$
v=v_{0}+a t
$$

here, $v_{0}=50 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the ball, $v=0 \mathrm{~m} / \mathrm{s}$ is the final velocity of the ball at the maximum height before it starts to fall down, $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational acceleration directed downward and t is the time.

Then, we get:

$$
\begin{gathered}
0=v_{0}-g t \\
v_{0}=g t \\
t=\frac{v_{0}}{g}=\frac{50 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=5.1 \mathrm{~s}
\end{gathered}
$$

Answer:

$t=5.1 \mathrm{~s}$.

