conservation of energy
a mass m is being lifted upward by means of a vertical spring of force constant k,with a uniform upward acceleration 'a'.If at the instant its velocity is $\mathrm{v}=\mathrm{Ag}$. $-(3 \mathrm{~m} / \mathrm{k})$
the upper end of the spring is suddenly brought to rest,calculate the max.extension in the spring.

$\mathrm{dx}=\mathrm{x} 2-\mathrm{x} 1 \quad$ where x 1 - length of spring in the rest and x 2 -length at this moment.
$K d x=m a+m g$ - when mass m is lifting up and $k d x+m a=m g$ when mass m is going down.
The tension $T=k d x$ would be max when $d s$ would be the greatest.this means that $x 2$ should be as far from x 1 as it is possible. S0 we will look at the lowest point of string. At that point(and at the moment when tension would be the greatest) $a=0$

Then $\mathrm{T}=\mathrm{kdx}=\mathrm{mg}$
So answ: $\mathrm{T}(\mathrm{max})=\mathrm{mg}$

