Answer on Question \#68306, Physics / Astronomy | Astrophysics

When a vehicle is passing through the atmosphere, at some point it may decelerate at a rate of $39.2 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ (away from the center of Earth) while Earth's gravitational pull remains at $-9.80 \mathrm{~m} / \mathrm{s}^{\wedge} 2$.
a)In such a situation, what is the apparent weight in gs of an astronaut inside the vehicle?
b)In this situation, is the astronaut in a microgravity situation?

Solution

a)

$$
a=39.2 \mathrm{~m} / \mathrm{s}^{2}=4 \mathrm{~g}
$$

From the second Newtons Law we have.
$P-m g=m a$.
Here mis mass of astronaut.
The apparent weight is

$$
P=m(g+a)
$$

Apparent weight in gs is

$$
\frac{P}{m}=(g+a)=g+4 g=5 g
$$

b) Microgravity is the condition in which people or objects appear to be weightless. Weight of astronaut is 5 g . No!

Answer:

a) 5 g
b) No.

