Answer on Question \#68289-Physics-Mechanics | Relativity

A football is kicked vertically upward from the ground and a student gazing out of the window sees it moving upward past her at $5.00 \mathrm{~m} / \mathrm{s}$. The window is 10.0 m above the ground.
a. how high does the ball go above the ground?
b. how long does it take to go from a height of 10 m to its highest point?
c. find its velocity and acceleration $1 / 2$ s after it left the ground.

Solution

a. at the height of the window:

$$
\begin{aligned}
& u^{2}-v^{2}=2 g h \\
& u=\sqrt{v^{2}+2 g h}
\end{aligned}
$$

At the maximum height:

$$
\begin{gathered}
u^{2}-0^{2}=2 g H \\
H=\frac{u^{2}}{2 g}=\frac{v^{2}+2 g h}{2 g}=h+\frac{v^{2}}{2 g}=10.0+\frac{1}{2} \frac{(5.00)^{2}}{(9.81)}=11.3 \mathrm{~m} .
\end{gathered}
$$

b.

$$
t=\sqrt{\frac{2 H}{g}}=\sqrt{\frac{2(11.3)}{9.81}}=1.52 \mathrm{~s}
$$

c. The velocity:

$$
v^{\prime}=u-g t=\sqrt{v^{2}+2 g h}-g t=\sqrt{5^{2}+2(9.81)(10)}-(9.81) 0.5=9.97 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The acceleration is $g=-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
Answer provided by https://www.AssignmentExpert.com

