Answer on Question 68285, Physics / Molecular Physics | Thermodynamics
 Question:

If a freezer cools 200 g of water from $20^{\circ} \mathrm{C}$ to its freezing point in 10 minutes, how much heat is removed per minute from the water?

Solution:

We can find how much heat is removed from the water during the freezing from the formula:

$$
Q=m c \Delta t,
$$

here, $m=0.2 \mathrm{~kg}$ is the mass of the water, $c=4200 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ is the specific heat capacity of the water and Δt is the change in the temperature.

Then, we get:

$$
Q=m c \Delta t=0.2 \mathrm{~kg} \cdot 4200 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}} \cdot\left(20^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)=16800 \mathrm{~J} \approx 17000 \mathrm{~J} .
$$

Finally, we can find how much heat is removed per minute from the water:

$$
Q_{\text {per minute }}=\frac{Q}{10 \min }=\frac{17000 \mathrm{~J}}{10 \mathrm{~min}}=1700 \frac{\mathrm{~J}}{\mathrm{~min}} .
$$

Answer:

$Q_{\text {per minute }}=1700 \frac{\mathrm{~J}}{\mathrm{~min}}$.

Answer provided by https://www.AssignmentExpert.com

