Answer on Question 68265, Physics, Mechanics | Relativity

Question:

A bicyclist pedaling passes an ambulance at a constant speed of $10 \mathrm{~m} / \mathrm{s}$. The ambulance was at a stop while it's siren is on at a frequency of 320 Hz . Determine the frequency detected by the bicyclist as it approaches the location of the ambulance. ($v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$)

Solution:

We can find the frequency detected by the bicyclist from the Doppler shift formula (the Doppler shift is the change in frequency of the sound source as it moves: the frequency will appear to increase as the source comes towards the bicyclist and will appear to decrease as the source moves away from the bicyclist):

$$
f_{B}=f_{s} \frac{\left(v_{\text {air }}+v_{B}\right)}{\left(v_{\text {air }}-v_{s}\right)}
$$

here, f_{B} is the frequency detected by the bicyclist, $f_{s}=320 \mathrm{~Hz}$ is the frequency of the sound source, $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ is the velocity of the sound in the air, $v_{B}=10 \mathrm{~m} / \mathrm{s}$ is the velocity of the bicyclist (it will be with sign plus, since the bicyclist moves toward the stationary source), $v_{s}=0 \mathrm{~m} / \mathrm{s}$ is the velocity of the sound source (since the sound source is at rest its velocity is equal to zero).

Then, we get:

$$
f_{B}=f_{s} \frac{\left(v_{\text {air }}+v_{B}\right)}{\left(v_{\text {air }}-v_{s}\right)}=320 \mathrm{~Hz} \cdot \frac{\left(343 \frac{\mathrm{~m}}{\mathrm{~s}}+10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{343 \frac{\mathrm{~m}}{\mathrm{~s}}}=329 \mathrm{~Hz} .
$$

Answer:

$f_{B}=329 \mathrm{~Hz}$.

