Answer on Question 68262, Physics, Mechanics | Relativity

Question:

A car traveling at a constant speed of $45.0 \mathrm{~m} / \mathrm{s}$ passes a trooper on a motorcycle hidden behind a billboard. One second after the speeding car passes the billboard; the trooper sets out from the billboard to catch the car, accelerating at a constant rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take her to overtake the car? (ans: 31.0 s).

Solution:

Let's write the kinematic equation for the car:

$$
x_{c a r}=x_{0 c a r}+v_{c a r} t,
$$

here, $x_{c a r}$ is the position of the car at any time t, x_{0} car $=45 \mathrm{~m}$ is the initial position of the car when the trooper begins to move (the car traveled with constant speed $v_{c a r}=$ $45.0 \mathrm{~m} / \mathrm{s}$ for one second, so we can find its initial position), $v_{c a r}$ is the speed of the car and t is the time.

Let's write the kinematic equation for the trooper:

$$
x_{\text {trooper }}=x_{0 \text { trooper }}+v_{\text {trooper }} t+\frac{1}{2} a t^{2},
$$

here, $x_{\text {trooper }}$ is the position of the trooper at any time $t, x_{0 \text { trooper }}=0 \mathrm{~m}$ is the initial position of the trooper, $v_{\text {trooper }}=0 \mathrm{~m} / \mathrm{s}$ is the initial speed of the trooper (since it starts from rest the initial speed will be equal to zero) and $a=3.0 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of the trooper.

At time t when the trooper overtake the car its positions are equal, so we can write:

$$
\begin{gathered}
x_{\text {car }}=x_{\text {trooper }}, \\
x_{0 \text { car }}+v_{\text {car }} t=x_{0 \text { trooper }}+v_{\text {trooper }} t+\frac{1}{2} a t^{2}, \\
x_{0 \text { car }}+v_{\text {car }} t=\frac{1}{2} a t^{2}, \\
45+45 t=\frac{1}{2} \cdot 3 t^{2},
\end{gathered}
$$

$$
\begin{gathered}
3 t^{2}-90 t-90=0 \\
t^{2}-30 t-30=0
\end{gathered}
$$

This quadratic equation has 2 roots (since the time can't be negative we choose the positive root):

$$
\begin{gathered}
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-30) \pm \sqrt{30^{2}-4 \cdot 1 \cdot(-30)}}{2 \cdot 1}, \\
t=\frac{30+\sqrt{1020}}{2}=30.9 \mathrm{~s} \approx 31.0 \mathrm{~s} .
\end{gathered}
$$

Answer:

$$
t=31.0 \mathrm{~s} .
$$

> Answer provided by https://www.AssignmentExpert.com

