Answer on Question \#68260 Physics / Mechanics | Relativity

A stone is thrown vertically upward with a speed of $12.0 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff 70.0 m high;
(a) How much later does it reach the bottom of the cliff?
(b) What is its speed just before hitting?
(c) What total distance did it travel?

Solution:

(a) The displacement of the stone is equal 70.0 m , so

$$
\begin{gathered}
s=v_{0} t+\frac{a t^{2}}{2} . \\
70=-12 t+5 t^{2}, \\
t^{2}-2.4 t-14=0 \\
D=5.76+4 \times 14=61.76 \\
t=\frac{2.4+\sqrt{61.76}}{2}=5.13 \mathrm{~s} .
\end{gathered}
$$

(b) $v=v_{0}+a t=-12+10 \times 5.13=39.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
(c) $l=l_{1}+l_{2}=2 l_{1}+s$.

$$
l_{1}=\frac{v_{0}^{2}}{2 g}=\frac{144}{20}=7.2 \mathrm{~m} .
$$

Thus total distance

$$
l=2 \times 7.2+70=84.4 \mathrm{~m}
$$

Answers:

(a) 5.13 s .
(b) $39.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
(c) 84.4 m .

