An object uniformly accelerates from rest and reaches a velocity of $122.0 \mathrm{~km} / \mathrm{h}$ north in 10.5 s . what was the average velocity of the object?

The formula for average velocity:

$$
v_{a}=\frac{S_{\text {total }}}{t_{\text {total }}}
$$

Total distance:

$$
S_{\text {total }}=\frac{a t_{\text {total }}^{2}}{2}
$$

By definition, acceleration is (initial velocity $=0$):

$$
a=\frac{v_{\text {final }}}{t_{\text {total }}}
$$

Thus:

$$
S_{\text {total }}=\frac{\frac{v_{\text {final }}}{t_{\text {total }}} t_{\text {total }}^{2}}{2}=\frac{t_{\text {total }} v_{\text {final }}}{2}
$$

And finally:

$$
\begin{aligned}
& v_{a}=\frac{t_{\text {total }} v_{\text {final }}}{2 t_{\text {total }}}=\frac{v_{\text {final }}}{2} \\
& v_{a}=\frac{122 \mathrm{~km} / \mathrm{h}}{2}=61 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Answer: $v_{a}=61 \mathrm{~km} / \mathrm{h}$

