Question

In the arrangement of the figure, billiard ball 1 moving at a speed of $3.7 \mathrm{~m} / \mathrm{s}$ undergoes a glancing collision with identical billiard ball 2 that is at rest. After the collision, ball 2 moves at speed $3.2 \mathrm{~m} / \mathrm{s}$, at an angle of $\theta 2=31^{\circ}$. What are (a) the magnitude and (b) the direction (angle $\theta 1$) of the velocity of ball 1 after the collision?

Solution

Conservation of momentum gives

$$
\overrightarrow{V_{1 l}}=\overrightarrow{V_{1 f}}+\overrightarrow{V_{2 f}} .
$$

Since the angle between $\overrightarrow{V_{1 l}}$ and $\overrightarrow{V_{2 f}}$ is θ_{2}, we can write cosine theorem

$$
V_{1 f}^{2}=V_{1 i}^{2}+V_{2 f}^{2}-2 V_{1 i} V_{2 f} \cos \left(\theta_{2}\right),
$$

and find $V_{1 f}=1.91 \mathrm{~m} / \mathrm{s}$.
But from the energy conservation we have that $V_{1 i}{ }^{2} \geqslant V_{1 f}{ }^{2}+V_{2 f}{ }^{2}$ or $V_{1 f}{ }^{2} \leqslant V_{1 i}{ }^{2}-V_{2 f}{ }^{2}=$ $1.86 \mathrm{~m} / \mathrm{s}$. We arrive at the contradiction, which means that collision described in the question is forbidden.

Picture is taken from https://www.physicsforums.com/threads/billiard-glancing-collision.346776/ Answer
Collision described in the question is forbidden by the low of energy conservation.

