

Question

In the arrangement of the figure, billiard ball 1 moving at a speed of 3.7 m/s undergoes a glancing collision with identical billiard ball 2 that is at rest. After the collision, ball 2 moves at speed 3.2 m/s, at an angle of $\theta_2 = 31^\circ$. What are (a) the magnitude and (b) the direction (angle θ_1) of the velocity of ball 1 after the collision?

Solution

Conservation of momentum gives

$$\vec{V}_{1i} = \vec{V}_{1f} + \vec{V}_{2f}.$$

Since the angle between \vec{V}_{1i} and \vec{V}_{2f} is θ_2 , we can write cosine theorem

$$V_{1f}^2 = V_{1i}^2 + V_{2f}^2 - 2V_{1i}V_{2f} \cos(\theta_2),$$

and find $V_{1f} = 1.91 \text{ m/s}$.

But from the energy conservation we have that $V_{1i}^2 \geq V_{1f}^2 + V_{2f}^2$ or $V_{1f}^2 \leq V_{1i}^2 - V_{2f}^2 = 1.86 \text{ m/s}$. We arrive at the contradiction, which means that collision described in the question is forbidden.

Picture is taken from <https://www.physicsforums.com/threads/billiard-glancing-collision.346776/>

Answer

Collision described in the question is forbidden by the law of energy conservation.