Answer on Question 68153, Physics, Other

Question:

An object of mass 0.30 kg is attached to the end of a string and supported by a smooth horizontal surface. The object moves in a horizontal circle of radius 0.50 m with a uniform speed of $2.0 \mathrm{~m} / \mathrm{s}$. Calculate:
(i) the centripetal acceleration
(ii) the tension in the string

Solution:

(i) We can find the centripetal acceleration from the formula:

$$
a_{c}=\frac{v^{2}}{r}
$$

here, a_{c} is the centripetal acceleration, v is the speed of the object and r is the radius of the circle.

Then, we get:

$$
a_{c}=\frac{v^{2}}{r}=\frac{\left(2.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.50 \mathrm{~m}}=8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

(ii) The force of tension in the string provides the necessary centripetal force, so we can write:

$$
\begin{gathered}
T=F_{c}, \\
T=m a_{c}=m \frac{v^{2}}{r}=0.30 \mathrm{~kg} \cdot \frac{\left(2.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.50 \mathrm{~m}}=2.4 \mathrm{~N} .
\end{gathered}
$$

Answer:

(i) $a_{c}=8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
(ii) $T=2.4 N$.

