Answer on Question 68151, Physics, Other

Question:

A disc is rotated from rest about its vertical axis through its centre, O. The angular acceleration is $2.50 \mathrm{rad} / \mathrm{s}^{2}$. After 4.0 s , calculate the angular velocity and the angular displacement.

Solution:

a) We can find the angular velocity of the disc after $t=4.0 \mathrm{~s}$ from the kinematic equation:

$$
\omega=\omega_{i}+\alpha t,
$$

here, ω_{i} is the initial angular velocity of the disc at $t=0$ (since the disc starts from rest it will be equal to zero), ω is the final angular velocity of the disc after $t=4.0 \mathrm{~s}, \alpha$ is the angular acceleration and t is the time.

Then, we can calculate the angular velocity of the disc after $t=4.0 \mathrm{~s}$:

$$
\omega=\omega_{i}+\alpha t=0 \frac{\mathrm{rad}}{\mathrm{~s}}+2.50 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \cdot 4.0 \mathrm{~s}=10 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

b) We can find the angular displacement from the kinematic equation:

$$
\omega^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta,
$$

here, ω_{i} is the initial angular velocity of the disc at $t=0$ (since the disc starts from rest it will be equal to zero), ω is the final angular velocity of the disc after $t=4.0 \mathrm{~s}, \alpha$ is the angular acceleration and $\Delta \theta$ is the angular displacement.

Then, we get:

$$
\begin{gathered}
\omega^{2}=2 \alpha \Delta \theta \\
\Delta \theta=\frac{\omega^{2}}{2 \alpha}=\frac{\left(10 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2}}{2 \cdot 2.50 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}}=20 \mathrm{rad} .
\end{gathered}
$$

Answer: a) $\omega=10 \frac{\mathrm{rad}}{\mathrm{s}}$. b) $\Delta \theta=20 \mathrm{rad}$.

