Answer on Question \#68150 Physics / Other

A proton is released from rest at point A in a uniform electric field E that has a magnitude of $8.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$. The proton undergoes a displacement $d=0.50 \mathrm{~m}$ to point B in the direction of E. Calculate the speed of the proton after completing the displacement.

Solution:

In the uniform electric field proton moves with constant acceleration

$$
a=\frac{F}{m}=\frac{q E}{m} .
$$

The displacement is related with acceleration by equation

$$
d=\frac{v^{2}-v_{0}^{2}}{2 a} .
$$

Thus the final speed of the proton

$$
v=\sqrt{v_{0}^{2}+2 a d}=\sqrt{2 a d}=\sqrt{2 \frac{q E}{m} d} .
$$

Because the charge and mass of the proton are

$$
q=1.60 \times 10^{-19} \mathrm{C}, \quad m=1.67 \times 10^{-27} \mathrm{~kg}
$$

we find

$$
v=\sqrt{2 \times \frac{1.60 \times 10^{-19} \times 8.00 \times 10^{4}}{1.67 \times 10^{-27}} 0.50}=2.77 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer: $v=2.77 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}$.

