Answer on Question \#68149 Physics / Other

Gas Z in a cylinder at STP has a mass of 100 g . When the gas is compressed at 50 atm , the temperature of the gas increase to 850 celsius. Calculate the initial and final volume of the gas. (Mass of 1 mole of gas Z is 30 g , at STP: $\mathrm{V}=22.4 \times 10^{\wedge}-3 \mathrm{~m}^{\wedge} 3, \mathrm{~T}=0^{*}$ Celsius , $\mathrm{P}=1 \mathrm{~atm}$).

Solution:

From the equation of state for perfect gas

$$
P V=\frac{m}{\mu} R T
$$

follows equation

$$
V=\frac{m}{\mu} \frac{R T}{P} .
$$

Using relations for SI units

$$
1 \mathrm{~atm}=10^{5} \mathrm{~Pa}, \quad T(\mathrm{~K})=t\left({ }^{\circ} \mathrm{C}\right)+273
$$

we obtain for initial volume

$$
V_{1}=\frac{m}{\mu} \frac{R T_{1}}{P_{1}}=\frac{100}{30} \times \frac{8.31 \times 273}{10^{5}}=0.076 \mathrm{~m}^{3},
$$

and for final volume

$$
V_{2}=\frac{m}{\mu} \frac{R T_{2}}{P_{2}}=\frac{100}{30} \times \frac{8.31 \times 1123}{50 \times 10^{5}}=0.006 \mathrm{~m}^{3} .
$$

Answer: $V_{1}=0.076 \mathrm{~m}^{3}, V_{2}=0.006 \mathrm{~m}^{3}$.

