

Answer on Question #68090 – Physics – Mechanics | Relativity

If an oscillator makes 100 vibrations per minute and its velocity at the mean position is 15 ft/sec. find the amplitude of vibration. What is its velocity half way between its mean position and extreme position?

Solution.

Angular frequency of oscillations:

$$\omega_0 = 2\pi\nu = \frac{2\pi N}{t} = 2\pi \frac{100}{60} = \frac{10\pi}{3} \text{ rad s}^{-1};$$

At the mean position $v = v_m$, therefore $v_m = 15 \text{ ft/sec}$

We find the amplitude of vibration:

$$v_m = \omega_0 A; A = \frac{v_m}{\omega_0} = \frac{15 \times 3}{10\pi} \approx 1.43 \text{ ft};$$

We find velocity at the position $x = \frac{1}{2}A$:

$$\frac{1}{2}A = A \sin \varphi; \sin \varphi = \frac{1}{2}; v = v_m \cos \varphi = 15\sqrt{1 - (1/2)^2} = \frac{15\sqrt{3}}{2} \approx 13 \text{ ft s}^{-1};$$

Answer:

$$A \approx 1.43 \text{ ft}$$
$$v \approx 13 \text{ ft s}^{-1}$$