Answer on Question \#68090 - Physics - Mechanics | Relativity

If an oscillator makes 100 vibrations per minute and its velocity at the mean position is $15 \mathrm{ft} / \mathrm{sec}$. find the amplitude of vibration. What is its velocity half way between its mean position and extreme position?

Solution.

Angular frequency of oscillations:
$\omega_{0}=2 \pi v=\frac{2 \pi N}{t}=2 \pi \frac{100}{60}=\frac{10 \pi}{3} \mathrm{rads}^{-1} ;$
At the mean position $v=v_{m}$, therefore $v_{m}=15 \mathrm{ft} / \mathrm{sec}$

We find the amplitude of vibration:
$v_{m}=\omega_{0} A ; \quad A=\frac{v_{m}}{\omega_{0}}=\frac{15 \times 3}{10 \pi} \approx 1.43 \mathrm{ft} ;$

We find velocity at the position $x=\frac{1}{2} A$:
$\frac{1}{2} A=A \sin \varphi ; \sin \varphi=\frac{1}{2} ; \quad v=v_{m} \cos \varphi=15 \sqrt{1-(1 / 2)^{2}}=\frac{15 \sqrt{3}}{2} \approx 13 \mathrm{ft}^{-1} ;$
Answer:
$A \approx 1.43 \mathrm{ft}$
$v \approx 13 \mathrm{ft} \mathrm{s}^{-1}$

