Answer on Question \#68081, Physics / Astronomy | Astrophysics

Question:

One of Saturn's moons has an orbital distance of $1.87 \times 10^{8} \mathrm{~m}$. The mean orbital period of this moon is approximately 23 hours. Use this information to estimate a mass for the planet Saturn.

Solution:

According to Kepler's $3^{\text {rd }}$ law

$$
\frac{a^{3}}{T^{2}}=\frac{G \mathfrak{M}_{\text {Sat }}}{4 \pi^{2}},
$$

where $\quad a$ - moon's mean orbital distance;
T - mean orbital period of the moon;
G - gravitational constant;
$\mathfrak{W}_{\text {sat }}$ - Saturn's mass.
Therefore $\mathfrak{W}_{\text {Sat }}=\frac{4 \pi^{2} a^{3}}{G T^{2}}$.
$a=1.87 \times 10^{8} \mathrm{~m}$
$T=23 h=82800 s$
$G=6.67408 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
$\mathfrak{W}_{\text {sat }}=\frac{4 \pi^{2}\left(1.87 \times 10^{8}\right)^{3}}{6.67408 \times 10^{-11} 82800^{2}}=5.64 \times 10^{26} \mathrm{~kg}$

Answer:

$5.64 \times 10^{26} \mathrm{~kg}$
Answer provided by https://www.AssignmentExpert.com

