Answer on Question #68081, Physics / Astronomy | Astrophysics

Question:

One of Saturn's moons has an orbital distance of 1.87×10^8 m. The mean orbital period of this moon is approximately 23 hours. Use this information to estimate a mass for the planet Saturn.

Solution:

According to Kepler's 3rd law $\frac{a^3}{T^2} = \frac{G\mathfrak{W}_{Sat}}{4\pi^2},$ where a — moon's mean orbital distance; T — mean orbital period of the moon; G — gravitational constant; \mathfrak{W}_{Sat} — Saturn's mass. Therefore $\mathfrak{W}_{Sat} = \frac{4\pi^2 a^3}{GT^2}.$ $a = 1.87 \times 10^8 m$ T = 23 h = 82800 s $G = 6.67408 \times 10^{-11} m^3 kg^{-1} s^{-2}$ $\mathfrak{W}_{Sat} = \frac{4\pi^2 (1.87 \times 10^8)^3}{6.67408 \times 10^{-11} 82800^2} = 5.64 \times 10^{26} kg$

Answer:

 $5.64 \times 10^{26} kg$

Answer provided by https://www.AssignmentExpert.com