Question \#68038, Physics / Molecular Physics

Potassium chlorate is often used to generate oxygen gas in high school laboratory. If 183.7 g of KClO_{3} is completely burnt catalytically, what volume of oxygen gas will be obtained at 39 celsius and 1200 torr pressure?

Solution:

Decomposition of Potassium chlorate:

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

The mol number of O_{2} is equal to:

$$
\begin{aligned}
& 2 n\left(\mathrm{KClO}_{3}\right)=3 n\left(\mathrm{O}_{2}\right) \\
& n\left(\mathrm{O}_{2}\right)=\frac{2}{3} n\left(\mathrm{KClO}_{3}\right)
\end{aligned}
$$

The mol number of the Potassium chlorate can be calculated from the mass:

$$
n\left(\mathrm{KClO}_{3}\right)=\frac{m\left(\mathrm{KClO}_{3}\right)}{M\left(\mathrm{KClO}_{3}\right)}=\frac{183.7 \mathrm{~g}}{122.55 \mathrm{~g} / \mathrm{mol}}=1.5 \mathrm{~mol}
$$

Using Ideal gas law:

$$
\begin{gathered}
p V=n R T \\
p=1200 \text { torr }=159986.8 \mathrm{~Pa} \\
T=39^{\circ} \mathrm{C}=312.15 \mathrm{~K}
\end{gathered}
$$

From this equation volume of O_{2} :

$$
\begin{gathered}
V=\frac{n R T}{p}=\frac{2 / 3 n\left(\mathrm{KClO}_{3}\right) \cdot R T}{p} \\
V=\frac{\frac{2}{3} \cdot 1.5 \mathrm{~mol} \cdot 8.314\left(\mathrm{~cm}^{3} \cdot \mathrm{MPa} / \mathrm{K} \cdot \mathrm{~mol}\right) \cdot 312.15 \mathrm{~K}}{0.16 \mathrm{MPa}}=16220 \mathrm{~cm}^{3}=16.22 \mathrm{~L}
\end{gathered}
$$

Answer: volume of oxygen is 16.22 L

