Answer on Question #68037, Physics / Electromagnetism

4 point-charges (same magnitude, signs shown) are arranged in а square. which of "mid-points" At one the (A, Β, C) is the net electric field zero?

Solution:

Force on the point at the centre 'B' due to point-charge at +Q (upper) is: $F_{+Qu} = G \frac{m^2}{r^2}$ (1), where r is +QB

Force on the point at the centre 'B' due to point-charge at –Q (upper) is: $F_{-Qu} = G \frac{m^2}{r^2}$ (2), where r is -QB

Force on the point at the centre 'B' due to point-charge at -Q (lower) is: $F_{-Ql} = G \frac{m^2}{r^2}$ (3), where r is -QB

Force on the point at the centre 'B' due to point-charge at +Q (lower) is: $F_{+Ql} = G \frac{m^2}{r^2}$ (4), where r is +QB

The forces F_{+Qu} and F_{-Ql} are equal and opposite and hence their resultant force: $F_{+Qu} - F_{-Ql} = 0$ (5)

The forces F_{+Ql} and F_{-Qu} are equal and opposite and hence their resultant force: $F_{+Ql} - F_{-Qu} = 0$

(6)

Of (5) and (6) \Rightarrow the net resultant force acting on the point B at centre is zero.

Answer:

Point B.

Answer provided by www.AssignmentExpert.com