4 point-charges (same magnitude, signs shown) are arranged in a square. At which one of the "mid-points" (A, B, C) is the net electric field zero?

Solution:

Force on the point at the centre ' B ' due to point-charge at $+Q$ (upper) is: $F_{+Q u}=G \frac{m^{2}}{r^{2}}(1)$, where r is $+Q B$

Force on the point at the centre ' B ' due to point-charge at $-Q$ (upper) is: $F_{-Q u}=G \frac{m^{2}}{r^{2}}(2)$, where r is -QB

Force on the point at the centre ' B ' due to point-charge at $-Q$ (lower) is: $F_{-Q l}=G \frac{m^{2}}{r^{2}}(3)$, where r is -QB

Force on the point at the centre ' B ' due to point-charge at $+Q$ (lower) is: $F_{+Q l}=G \frac{m^{2}}{r^{2}}(4)$, where r is $+Q B$

The forces $F_{+Q u}$ and $F_{-Q l}$ are equal and opposite and hence their resultant force: $F_{+Q u}-F_{-Q l}=0$ (5)

The forces $F_{+Q I}$ and $F_{-Q u}$ are equal and opposite and hence their resultant force: $F_{+Q l}-F_{-Q u}=0$ (6)

Of (5) and $(6) \Rightarrow$ the net resultant force acting on the point B at centre is zero.

Answer:

Point B.

