Answer to Question \#67990, Physics / Mechanics

Question:

if the earth doubled in size \& the mass is tripled, what would the gravitational field strength be?

Solution:

The strength of the gravitational field of our planet is calculated as

$$
g=\frac{G m_{E}}{R_{E}^{2}}
$$

Where G is a gravitational constant, m_{E} is the mass of Earth, R_{E} is a radius of our planet.

If the radius is doubled and mass is tripled then

$$
\boldsymbol{g}^{\prime}=\frac{G m_{E}^{\prime}}{{R_{E}^{\prime}}^{2}}=\frac{G * 3 m_{E}}{\left(2 R_{E}\right)^{2}}=\frac{3}{4} \frac{G m_{E}}{R_{E}^{2}}=\frac{\mathbf{3}}{\mathbf{4}} \boldsymbol{g}=7.3575 \frac{\boldsymbol{m}}{\boldsymbol{s}^{2}}
$$

