Q1. If a force of 80 N extends a spring of natural lenght 8 m by 0.4 m what will be the lenght of the spring when applied force is 100 n .

First of all we need to find the spring constant (from Hooke's law):

$$
k=\frac{F_{1}}{x_{1}}
$$

F_{1} - applied force in the 1-st case. x_{1} - displacement.
So, the length of the spring in the 2-nd case will be greater its natural length:

$$
x_{2}=\frac{F_{2}}{k}=\frac{F_{2}}{\frac{F_{1}}{x_{1}}}=\frac{F_{2} x_{1}}{F_{1}}
$$

And the total length in 2-nd case:

$$
\begin{gathered}
l=l_{0}+\frac{F_{2} x_{1}}{F_{1}} \\
l=8 \mathrm{~m}+\frac{100 \mathrm{~N} * 0.4 \mathrm{~m}}{80 \mathrm{~N}}=8.5 \mathrm{~m}
\end{gathered}
$$

Answer: $l=8.5 \mathrm{~m}$

