Answer Question \#67975 - Physics - Mechanics - Relativity

Two cliffs are separated by a river in an attempt to get supplies from one cliff to the other they were launched from the 100 m cliff with a speed of $70 \mathrm{~m} / \mathrm{s}$. How fast will the supplies be moving when they arrive at the 65 m cliff?

Solution.

Consider the motion separately in horizontal and vertical direction (the trajectory shown in figure). In horizontal direction the body is moving uniformly with speed $v_{x}=70 \frac{\mathrm{~m}}{\mathrm{~s}}$. In vertical direction the body is moving uniformly accelerated with acceleration $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ downward. Therefore body height at an arbitrary time after the start of the fall, you can find as

$$
h(t)=100-\frac{g t^{2}}{2}
$$

in this case the vertical component of velocity equal $v_{y}=g t$. According to the condition of the problem the height of the body is equal to 65 m . Find t :
$65=100-\frac{9.8 t^{2}}{2} \rightarrow t=\sqrt{\frac{2(100-65)}{9.8}} \approx 2.67 \mathrm{~s}$.
Respectively the horizontal and vertical components of velocity equal to
$v_{x}=70 \frac{\mathrm{~m}}{\mathrm{~s}}$ and $v_{x}=9.8 \cdot 2.67 \frac{\mathrm{~m}}{\mathrm{~s}} \approx 26 \frac{\mathrm{~m}}{\mathrm{~s}}$
The speed of the body at this moment is equal to

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{70^{2}+26^{2}} \approx 74.7 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer. $v=74.7 \frac{\mathrm{~m}}{\mathrm{~s}}$.

