Answer on Question \#67937- Physics / Other

Consider of the motion of the earth around the sun. Assume that the earth orbit is a perfect circle and the earth moves at constant speed around the sun. The earth orbits the sun at average distance of $1.0 \mathrm{x} 10{ }^{\wedge} 11 \mathrm{~m}$.
a) what is the orbital speed of the earth around the sun? Answer in m/s.
B) what is the radial acceleration of the earth around the sun?
C) what direction is acceleration pointing?

Solution:

a) From the second Newton's law

$$
\begin{gathered}
m a=G \frac{m M_{\text {sun }}}{R^{2}} \\
\frac{v^{2}}{R}=G \frac{M_{\text {sun }}}{R^{2}}
\end{gathered}
$$

Thus, the speed of the Earth around the Sun

$$
v=\sqrt{G \frac{M_{\mathrm{sun}}}{R}}=\sqrt{6.67 \times 10^{-11} \frac{1.99 \times 10^{30}}{1.0 \times 10^{11}}}=36432.54 \mathrm{~m} / \mathrm{s} .
$$

b) The radial acceleration of the Earth around the Sun

$$
a=\frac{v^{2}}{R}=G \frac{M_{\text {sun }}}{R^{2}}=6.67 \times 10^{-11} \frac{1.99 \times 10^{30}}{\left(1.0 \times 10^{11}\right)^{2}}=0.13 \mathrm{~m} / \mathrm{s}^{2}
$$

c) The acceleration of the Earth has direction to the center of Sun.

Answers: a) $36432.54 \mathrm{~m} / \mathrm{s}$, b) $0.13 \mathrm{~m} / \mathrm{s}^{2}$, c) to the center of Sun.
Answer provided by https://www.AssignmentExpert.com

