

## Answer on Question #67799 – Physics – Mechanics | Relativity

SHO (Simple Harmonic Oscillators) consists of a spring with constant  $k = 10 \text{ N/m}$  and mass  $m = 0.1 \text{ kg}$ . Find the frequency of oscillations, angular frequency of oscillations, and find the solution for the SHO

for initial conditions given by at  $t = 0, x(0) = 0.01 \text{ m}$ , and  $v(0) = 5 \text{ m/sec}$ .

### Solution.

Angular frequency of oscillations:

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{10}{0.1}} = 10 \text{ rad s}^{-1};$$

Frequency of oscillations:

$$v = \frac{\omega_0}{2\pi} = \frac{5}{\pi} \approx 1.59 \text{ Hz};$$

General solution for the SHO:

$$x(t) = x_m \cos(\omega_0 t + \varphi);$$

The solution for the SHO for initial conditions:

$$\begin{cases} x(0) = x_m \cos \varphi \\ v(0) = -\omega_0 x_m \sin \varphi; \end{cases} \quad \frac{v(0)}{x(0)} = -\omega_0 \tan \varphi; \quad \frac{5}{0.01} = -10 \tan \varphi; \quad \tan \varphi = -50;$$

$$\varphi = -\tan^{-1} 50 \approx -1.55;$$

$$\cos \varphi = \frac{1}{\sqrt{1 + (\tan \varphi)^2}} = \frac{1}{\sqrt{1 + 2500}} \approx 0.02; \quad x_m = \frac{x(0)}{\cos \varphi} = \frac{0.01}{0.02} = 0.5 \text{ m};$$

$$x(t) = 0.5 \cos(10t - 1.55);$$

### Answer:

$$v = \frac{5}{\pi} \approx 1.59 \text{ Hz}; \quad \omega_0 = 10 \text{ rad s}^{-1}; \quad x(t) = 0.5 \cos(10t - 1.55).$$

Answer provided by <https://www.AssignmentExpert.com>