Answer on Question 67780, Physics, Mechanics, Relativity

Question:

A car is traveling $90 \mathrm{~km} / \mathrm{h}$ at night. The motorist spots a deer on the road 55 m in front of the car. If the speed and direction of the car remains the same, how long will it take for the car to reach the deer's position?

Solution:
Let's first convert km / h to m / s :

$$
v=90 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=25 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Then, we can find the time that needs the car to reach the deer's position from the formula:

$$
t=\frac{s}{v}=\frac{55 \mathrm{~m}}{25 \frac{\mathrm{~m}}{\mathrm{~s}}}=2.2 \mathrm{~s}
$$

Answer:

$t=2.2 \mathrm{~s}$.

