Answer on Question 67736, Physics, Mechanics, Relativity

Question:

From the ground, a projectile is fired at an angle of 60° to the horizontal with a speed of $20 \mathrm{~m} / \mathrm{s}$. Take accelaration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$. The horizontal range of the projectile is?

Solution:

We can find the horizontal range of the projectile from the formula:

$$
R=\frac{v_{0}^{2} \sin 2 \theta}{g}
$$

here, v_{0} is the initial velocity of the projectile, θ is the angle of projection of the projectile, g is the acceleration due to gravity.

Then, we get:

$$
R=\frac{v_{0}^{2} \sin 2 \theta}{g}=\frac{\left(20 \frac{m}{s}\right)^{2} \cdot \sin \left(2 \cdot 60^{\circ}\right)}{10 \frac{m}{s^{2}}}=34.64 \mathrm{~m} .
$$

Answer:

$R=34.64 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

