Answer on Question \#67703, Physics / Mechanics | Relativity
the speed of a spacecraft moving between Earth and Mars at an instant when earth and mars are 2.4 into $10^{\wedge} 11 \mathrm{~m}$ apart is $\mathrm{v}=0.8 \mathrm{c}$. the distance between them measured from the frame where they are at rest.what is the distance between E and M in the spacecraft frame.and what time elapses betewen crossing E and reaching M.

Find: L-? t - ?

Given:

$\mathrm{L}_{0}=2.4 \times 10^{11} \mathrm{~m}$
$\mathrm{v}=0.8 \mathrm{c}$
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Solution:

Length contraction: $L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}(1)$
Of (1) $\Rightarrow \mathrm{L}=1.44 \times 10^{11} \mathrm{~m}$
Time: $\mathrm{t}=\frac{\mathrm{L}_{0}}{\mathrm{v}}(2)$
Of $(2) \Rightarrow t=10^{3} \mathrm{~s}$
Answer:
$1.44 \times 10^{11} \mathrm{~m}$
$10^{3} \mathrm{~s}$
Answer provided by https://www.AssignmentExpert.com

