Answer on Question \#67644- Physics / Quantum Mechanics

A particle of mass ' m ' is located at the vector position r and has a linear momentum p. The vector r and p are nonzero.if the particle moves only in $y-z$ plane. Prove that $L y=L z=0$ and $L x$ is not equal to zero.

Solution:

In the case when particle moves only in y-z plane

$$
\begin{gathered}
\mathbf{r}=(0, y, z) \\
\mathbf{p}=\left(0, p_{y}, p_{z}\right) .
\end{gathered}
$$

By definition the angular momentum is given by

$$
\mathbf{L}=[\mathbf{r} \times \mathbf{p}]
$$

The components of angular momentum

$$
\begin{gathered}
L_{x}=y p_{z}-z p_{y} \neq 0, \\
L_{y}=z p_{x}-x p_{y}=z \cdot 0-0 \cdot p_{y}=0, \\
L_{z}=x p_{y}-y p_{x}=0 \cdot p_{y}-y \cdot 0=0 .
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

