Answer to Question \#67616, Physics / Mechanics | Relativity

Question: A guitar string has a linear density of $7.16 \mathrm{gm} / \mathrm{m}$ and is under tension of 152 N .The fixed supports of the string are 89.3 cm apart. If it vibrates in three segments, calculate the speed, wavelength and frequency of the standing wave.

Solution:

Tension $T=152 \mathrm{~N}$
Length of the string $L=89.3 \mathrm{~cm}=0.893 \mathrm{~m}$
The linear density of the string $\rho=7.16 \frac{\mathrm{~g}}{\mathrm{~m}}=0.00716 \frac{\mathrm{~kg}}{\mathrm{~m}}$
In general the wave propagates the string with the speed

$$
\boldsymbol{\vartheta}=\sqrt{\frac{T}{\rho}}=145.702 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

If the string has two ends fixed and vibrates in three segments then

$$
\boldsymbol{f}=3 f_{\text {fundamental }}=\frac{3 \vartheta}{2 L}=\mathbf{2 4 4 . 7 4} \mathbf{s}^{\mathbf{- 1}}
$$

and the wavelength is then calculated as

$$
\lambda=\frac{\vartheta}{f}=\frac{2 L}{3}=0.595 \mathrm{~m}
$$

Answer provided by https://www.AssignmentExpert.com

