Answer on Question \#67520, Physics / Mechanics | Relativity

4/ A 0.9 mol sample of an ideal gas undergoes an isothermal process. The initial volume is $0.20 \mathrm{~m}^{3}$ and the final volume is $0.40 \mathrm{~m}^{3}$. If the heat added to the gas is 2000 J , find the temperature of the gas.

Solution:
For an isothermal process, the expression for work is:

$$
W=n R T \ln \frac{V_{f}}{V_{i}}=Q
$$

where n is the number of moles of gas present and R is the ideal gas constant.

$$
T=\frac{Q}{n R \ln \frac{V_{f}}{V_{i}}}
$$

Substituting

$$
T=\frac{2000 \mathrm{~J}}{(0.9 \mathrm{~mol}) \times\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln \frac{0.40}{0.20}}=385.8 \mathrm{~K}
$$

Answer. $T=385.8 \mathrm{~K}$
$5 / \mathrm{In}$ an intestellar gas cloud (e.g., a star-forming region) at 20.0 K , the pressure is $1.0 \times 10^{-8} \mathrm{~Pa}$. Assuming that the molecular diameters of the gases in the cloud are all 15.0 nm , what is their mean free path?

Solution:

The mean free path λ of a gas molecule is its average path length between collisions and is given by

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V}
$$

where N / V is the number of molecules per unit volume and d is the molecular diameter.

An ideal gas is one for which the pressure p, volume V , and temperature T are related by

$$
p V=N k T,
$$

where the Boltzmann constant k is $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
Thus,

$$
\begin{aligned}
\frac{N}{V}=\frac{p}{k T} & =\frac{1.0 \times 10^{-8}}{1.38 \times 10^{-23} \times 20.0}=3.62 \times 10^{13} \text { molecules } / \mathrm{m}^{3} \\
\lambda & =\frac{1}{\sqrt{2} \pi\left(15.0 \times 10^{-9}\right)^{2} \times 3.62 \times 10^{13}}=27.6 \mathrm{~m}
\end{aligned}
$$

Answer. $\lambda=27.6 \mathrm{~m}$
Answer provided by https://www.AssignmentExpert.com

