Answer on Question \#67518- Physics / Mechanics / Relativity

9/ A 2.0 mol sample of an ideal monatomic gas undergoes a reversible process at constant volume, increasing its temperature from 400 K to 600 K . What is the entropy change of the gas?

Solution:

Entropy of ideal gas

$$
S\left(T_{1} V\right)=v\left(C_{v} \ln T+R \ln V+S_{0}\right)
$$

Thus, change of entropy

$$
\Delta S=v C_{v} \ln \frac{T_{1}}{T_{2}}=2 \times \frac{3}{2} \times 8.3 \times \ln \frac{600}{400}=4.38 \frac{\mathrm{~J}}{\mathrm{~K}} .
$$

Answer: $\Delta S=4.38 \frac{\mathrm{~J}}{\mathrm{~K}}$.
10/ Calculate the change in entropy of gases in the following cases:
a) A 3.0 mol sample of an ideal gas expands reversibly and isothermally at 350 K until its volume doubled.
b) The temperature of 1.0 mol of an ideal monatomic gas is raised reversibly from 200 K to 300 K , with its volume kept constant.

Solution:

Entropy of ideal gas

$$
S\left(T_{1} V\right)=v\left(C_{v} \ln T+R \ln V+S_{0}\right)
$$

A)

$$
\Delta S=v R \ln \frac{V_{1}}{V_{2}}=3 \times 8.3 \times \ln 2=3.74 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

B)

$$
\Delta S=v C_{v} \ln \frac{T_{1}}{T_{2}}=1 \times \frac{3}{2} \times 8.3 \times \ln \frac{300}{200}=2.19 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Answer: $\Delta S=3.74 \frac{\mathrm{~J}}{\mathrm{~K}}, \Delta S=2.19 \frac{\mathrm{~J}}{\mathrm{~K}}$.
Answer provided by https://www.AssignmentExpert.com

