Answer on Question 67516, Physics, Molecular Physics, Thermodynamics

Question:

A gas is compressed from $400 \, cm^3$ to $200 \, cm^3$ at a constant pressure of $100 \, kPa$. At the same time, $100 \, J$ of heat energy is transferred out of the gas. What is the change in internal energy of the gas during this process?

Solution:

We can find the change in internal energy of the gas during this process from the first law of thermodynamics:

$$\Delta U = Q + W,$$

here, ΔU is the change in internal energy of the gas during this process, Q = -100 J is the heat energy that transferred out of the gas, W is the work done by the gas.

By the definition of the work done by the gas, we get:

$$W = -p\Delta V = -p(V_{final} - V_{initial}) =$$

= -100 \cdot 10^3 Pa \cdot (200 \cdot 10^{-6} m^3 - 400 \cdot 10^{-6} m^3) = 20 J.

Finally, we can find the change in internal energy of the gas during this process:

$$\Delta U = Q + W = -100 J + 20 J = -80 J.$$

Answer:

 $\Delta U = -80 J.$

Answer provided by https://www.AssignmentExpert.com