Answer on Question 67516, Physics, Molecular Physics, Thermodynamics

Question:

A gas is compressed from $400 \mathrm{~cm}^{3}$ to $200 \mathrm{~cm}^{3}$ at a constant pressure of 100 kPa . At the same time, 100 J of heat energy is transferred out of the gas. What is the change in internal energy of the gas during this process?

Solution:

We can find the change in internal energy of the gas during this process from the first law of thermodynamics:

$$
\Delta U=Q+W,
$$

here, ΔU is the change in internal energy of the gas during this process, $Q=-100 \mathrm{~J}$ is the heat energy that transferred out of the gas, W is the work done by the gas.

By the definition of the work done by the gas, we get:

$$
\begin{aligned}
W=-p \Delta V & =-p\left(V_{\text {final }}-V_{\text {initial }}\right)= \\
& =-100 \cdot 10^{3} \mathrm{~Pa} \cdot\left(200 \cdot 10^{-6} \mathrm{~m}^{3}-400 \cdot 10^{-6} \mathrm{~m}^{3}\right)=20 \mathrm{~J} .
\end{aligned}
$$

Finally, we can find the change in internal energy of the gas during this process:

$$
\Delta U=Q+W=-100 \mathrm{~J}+20 \mathrm{~J}=-80 \mathrm{~J} .
$$

Answer:

$\Delta U=-80 \mathrm{~J}$.

