

Answer on Question #67497, Physics / Mechanics | Relativity

four particles of mass 'm' are kept at four vertices of a square of side 'a'. Then the gravitational force acting on a particle of same mass 'm' placed at centre is

Solution:

Force on the mass at the centre 'O' due to mass at A is: $F_A = G \frac{m^2}{r^2}$ (1), where r is OA

Force on the mass at the centre 'O' due to mass at B is: $F_B = G \frac{m^2}{r^2}$ (2), where r is OB

Force on the mass at the centre 'O' due to mass at C is: $F_C = G \frac{m^2}{r^2}$ (3), where r is OC

Force on the mass at the centre 'O' due to mass at D is: $F_D = G \frac{m^2}{r^2}$ (4), where r is OD

The forces F_A and F_C are equal and opposite and hence their resultant force: $F_A - F_C = 0$ (5)

The forces F_B and F_D are equal and opposite and hence their resultant force: $F_B - F_D = 0$ (6)

Of (5) and (6) \Rightarrow the net resultant force acting on mass m at centre is zero.

Answer:

Zero

Answer provided by <https://www.AssignmentExpert.com>