four particles of mass ' $m$ ' are kept at four vertices of a square of side ' $a$ '. Then the gravitational force acting on a particle of same mass ' $m$ ' placed at centre is

## Solution:



Force on the mass at the centre ' $O$ ' due to mass at $A$ is: $F_{A}=G \frac{m^{2}}{r^{2}}(1)$, where $r$ is $O A$ Force on the mass at the centre ' $O$ ' due to mass at $B$ is: $F_{B}=G \frac{m^{2}}{r^{2}}(2)$, where $r$ is $O B$ Force on the mass at the centre ' $O$ ' due to mass at $C$ is: $F_{C}=G \frac{m^{2}}{r^{2}}(3)$, where $r$ is $O C$ Force on the mass at the centre ' $O$ ' due to mass at $D$ is: $F_{D}=G \frac{m^{2}}{r^{2}}(4)$, where $r$ is $O D$ The forces $\mathrm{F}_{\mathrm{A}}$ and $\mathrm{F}_{\mathrm{C}}$ are equal and opposite and hence their resultant force: $\mathrm{F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{C}}=0(5)$ The forces $F_{B}$ and $F_{D}$ are equal and opposite and hence their resultant force: $F_{B}-F_{D}=0$ (6) Of (5) and (6) $\Rightarrow$ the net resultant force acting on mass $m$ at centre is zero.

## Answer:

Zero
Answer provided by https://www.AssignmentExpert.com

