An object vibrates 61440 times in a minute. if the velocity of the sound in the air is $330 \mathrm{~m} / \mathrm{s}$. find the frequency of the sound in hertz and the wave length

Frequency of the sound will be equal to the frequency of object:

$$
f=\frac{61440}{1 \min }=\frac{61440}{60 s}=1024 s^{-1}=1024 \mathrm{~Hz}
$$

Wave length can be found from equation:

$$
\lambda=\frac{c_{s}}{f}
$$

Where c_{S} - the speed of sound.

$$
\lambda=\frac{330 \mathrm{~m} / \mathrm{s}}{1024 \mathrm{~Hz}} \cong 0.322 \mathrm{~m}
$$

Answer: $f=1024 \mathrm{~Hz}, \lambda \cong 0.322 \mathrm{~m}$

