Answer on Question \#67288, Physics / Molecular Physics | Thermodynamics
At 0 degree celcius the pressure of the gas in constant volume gas thermometer is 30 cm Hg .
Calculate the temperature when the pressure of the gas is 50 cm of Hg
Find: $\mathrm{T}_{2}-$?
Given:
$\mathrm{T}_{1}=273 \mathrm{~K}$
$\mathrm{P}_{1}=\frac{30 \mathrm{~cm} \mathrm{Hg}}{76 \mathrm{~cm} \mathrm{Hg}} \times 1.013 \times 10^{5} \mathrm{~Pa}=0.4 \times 10^{5} \mathrm{~Pa}$
$P_{2}=\frac{50 \mathrm{~cm} \mathrm{Hg}}{76 \mathrm{~cm} \mathrm{Hg}} \times 1.013 \times 10^{5} \mathrm{~Pa}=0.67 \times 10^{5} \mathrm{~Pa}$
Solution:
Gay-Lussac's Law:
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
Of (1) $\Rightarrow \mathrm{T}_{2}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \mathrm{~T}_{1}(2)$
Of (2) $\Rightarrow \mathrm{T}_{2}=457 \mathrm{~K}(3)$
Of (3) $\Rightarrow \mathrm{t}_{2}=+184^{\circ} \mathrm{C}$

Answer:

$+184{ }^{\circ} \mathrm{C}$ (457 K)

Answer provided by https://www.AssignmentExpert.com

