Answer on Question \#67215-Physics-Solid State Physics

A particle is projected vertically upwards. After a time t, another particle is sent up from the same point with the same velocity and meets the first at a height h during the downward flight of the first. Find the velocity of projection.

Solution

$$
\begin{aligned}
& y=v T-\frac{g T^{2}}{2} \\
& y=v(T-t)-\frac{g(T-t)^{2}}{2} .
\end{aligned}
$$

A height h:

$$
v T-\frac{g T^{2}}{2}=h \rightarrow T=\frac{v \pm \sqrt{v^{2}-4\left(\frac{g}{2}\right) h}}{2\left(\frac{g}{2}\right)}
$$

It meets the first at a height h during the downward flight of the first:

$$
T=\frac{v+\sqrt{v^{2}-2 g h}}{g}
$$

So,

$$
\begin{gathered}
v\left(\frac{v+\sqrt{v^{2}-2 g h}}{g}-t\right)-\frac{g\left(\frac{v+\sqrt{v^{2}-2 g h}}{g}-t\right)^{2}}{2}=h \\
2 \sqrt{v^{2}-2 g h}=g t \\
v^{2}=2 g h+\left(\frac{g t}{2}\right)^{2}
\end{gathered}
$$

The velocity of projection is

$$
v=\sqrt{2 g h+\left(\frac{g t}{2}\right)^{2}}
$$

