## Answer on Question 67199, Physics, Other

## Question:

The ratio of the speed of sound in nitrogen gas to that in helium gas at 300 K is?

## Solution:

We can find the speed of sound in gas at certain temperature from the formula:

$$
c=\sqrt{\gamma \frac{R T}{M}},
$$

here, $\gamma$ is the adiabatic index of gas $\left(\gamma_{N_{2}}=\frac{7}{5}, \gamma_{H e}=\frac{5}{3}\right), R=8.3145 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$ is the molar gas constant, $T$ is the temperature in Kelvin, $M$ is the molar mass of gas ( $M_{N_{2}}=$ $0.02801 \frac{\mathrm{~kg}}{\mathrm{~mol}}, M_{\mathrm{He}}=0.004 \frac{\mathrm{~kg}}{\mathrm{~mol}}$ ).

Then, we can find the speed of sound in nitrogen gas at 300 K :

$$
c_{N_{2}}=\sqrt{\gamma_{N_{2}} \cdot \frac{R T}{M_{N_{2}}}}=\sqrt{\frac{7}{5} \cdot \frac{8.3145 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 300 \mathrm{~K}}{0.02801 \frac{\mathrm{~kg}}{\mathrm{~mol}}}}=353 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Similarly, we can find the speed of sound in helium gas at 300 K :

$$
c_{H e}=\sqrt{\gamma_{H e} \cdot \frac{R T}{M_{H e}}}=\sqrt{\frac{5}{3} \cdot \frac{8.3145 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 300 \mathrm{~K}}{0.004 \frac{\mathrm{~kg}}{\mathrm{~mol}}}}=1019 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Finally, we can find the ratio:

$$
\frac{c_{N_{2}}}{c_{H e}}=\frac{353 \frac{\mathrm{~m}}{\mathrm{~s}}}{1019 \frac{\mathrm{~m}}{\mathrm{~s}}}=0.346 .
$$

## Answer:

$\frac{c_{N_{2}}}{c_{H e}}=0.346$.

Answer provided by https://www.AssignmentExpert.com

