Answer on Question \#67144-Physics-Mechanics-Relativity

A table tennis ball is dropped unto the floor from a height of 4 m and it rebounds to a height of 3 m . If the time of contact with the floor is 0.01 s . What is the magnitude and direction of the acceleration during the contact? Find the final velocity on hitting the ground?

Solution

The initial velocity on hitting the ground is

$$
v_{1}=\sqrt{2 g h_{1}}=\sqrt{2(9.8)(4)}=8.85 \frac{\mathrm{~m}}{\mathrm{~s}} \text { Downward. }
$$

From the conservation of energy the kinetic energy of a ball after on hitting the ground is equal to the potential energy at the highest point of trajectory:

$$
\frac{m v_{2}^{2}}{2}=m g h_{2}
$$

Thus, the final velocity on hitting the ground is

$$
v_{2}=\sqrt{2 g h_{2}}=\sqrt{2(9.8)(3)}=7.67 \frac{\mathrm{~m}}{\mathrm{~s}} \text { Upward. }
$$

The acceleration during the contact is

$$
a=\frac{v_{2}-\left(-v_{1}\right)}{t}=\frac{7.67+8.85}{0.01}=1652 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \text { Upward. }
$$

Answer provided by https://www.AssignmentExpert.com

