Answer on Question \#67138- Physics-Mechanics-Relativity

5. In the diagram, if $m 1$ is 8.0 kg and m 2 is 10.0 kg and the ramp is at a 35.0 o angle find the acceleration of the masses assuming there is no friction. What would be the ?fk for the system to be at equilibrium?

Solution

$$
\begin{gathered}
m_{1} a=T-m_{1} g(\sin 35) \\
m_{2} a=m_{2} g-T \\
a=g \frac{m_{2}-m_{1}(\sin 35)}{m_{1}+m_{2}}=9.8 \frac{10-8(\sin 35)}{10+8}=2.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

For equilibrium:

$$
\begin{gathered}
a=g \frac{m_{2}-m_{1}(\sin 35+\mu \cos 35)}{m_{1}+m_{2}}=0 \\
m_{2}-m_{1}(\sin 35+\mu \cos 35)=0 \\
10-8(\sin 35+\mu \cos 35)=0 \\
\mu=0.83
\end{gathered}
$$

6. A child shoots a 3.0 g bottle cap up a ramp 20 o above horizontal at $2.0 \mathrm{~m} / \mathrm{s}$. The cap slides in a straight line, slowing to $1.0 \mathrm{~m} / \mathrm{s}$ after traveling some distance, d . If ?fk is 0.40 , find that distance.

Solution

$$
\begin{gathered}
v_{f}^{2}-v_{i}^{2}=-2 a d \\
a=g(\sin \alpha+\mu \cos \alpha) \\
d=-\frac{v_{f}^{2}-v_{i}^{2}}{2 g(\sin \alpha+\mu \cos \alpha)}=\frac{2^{2}-1^{2}}{2(9.8)(\sin 20+0.4 \cos 20)}=0.21 \mathrm{~m}
\end{gathered}
$$

7. Two monkeys with equal mass hang from the ends of a rope passing over a weightless, frictionless pulley. If one accelerates up the rope at $1.0 \mathrm{~m} / \mathrm{s} 2$, what will happen to the other?

Solution

$$
\begin{gathered}
m a+m g=T \\
m a_{1}=T-m g=m a+m g-m g=m a
\end{gathered}
$$

Thus, the second monkey would accelerate up at $1.0 \mathrm{~m} / \mathrm{s} 2$.
Answer provided by https://www.AssignmentExpert.com

