Answer on Question \#67127-Physics-Other

A pump moves water from a basement under pressure up to the first floor where it exits an open faucet. $r 1=5 \mathrm{~cm}, \mathrm{r} 2=2 \mathrm{~cm}, \mathrm{~h} 1=1 \mathrm{~m}, \mathrm{~h} 2=5 \mathrm{~m}, \mathrm{v} 1=5 \mathrm{~m} / \mathrm{s}$, Density of water is $1000 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$.
(a) Determine v2
(b) Determine the pressure at the pump P1.

Solution

(a)

$$
\begin{gathered}
A_{1} v_{1}=A_{2} v_{2} \\
v_{2}=\frac{A_{1}}{A_{2}} v_{1}=\left(\frac{r_{1}}{r_{2}}\right)^{2} v_{1}=\left(\frac{5}{2}\right)^{2} 5=31.25 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

(b) $P_{2}=101325 P a$

From the Bernoulli equation:

$$
\begin{gathered}
P_{1}=P_{2}+\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)+\rho g\left(h_{2}-h_{1}\right)=101325+\frac{1}{2} 1000\left(31.25^{2}-5^{2}\right)+1000(9.8)(5-1) \\
=616306 \mathrm{~Pa}
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

