Answer to Question \#67118, Physics / Electromagnetism

Problem: Charges $q 1=0.09 \mathrm{C}, \mathrm{q} 2=0.01 \mathrm{C}$, are a distance $\mathrm{I}=1 \mathrm{~m}$ apart. a charge Q is held fixed on the line between them, a distance x from $q 1$. What value must Q, x have for $q 1, q 2$ to feel no net force?

Solution:
For the charges q1 and q2 to feel no net force, the value of electric field at the charges should be equal to 0 .

Considering the picture, one can write

$$
\left\{\begin{array}{l}
E_{2}=E_{Q 1} \\
E_{1}=E_{Q 2}
\end{array}\right.
$$

Where E_{2} is the field of q_{2} at the point of $q_{1}, E_{Q 1}$ is the field of Q at the point of q_{1}, E_{1} is the field of q_{1} at the point of q_{2} and $E q_{2}$ is the field of Q at q_{2}.

Considering that in general $E=k q / d^{2}$ one can write the following:

$$
\begin{equation*}
\frac{k q_{2}}{l^{2}}=\frac{k Q}{x^{2}} \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
\frac{k q_{1}}{l^{2}}=\frac{k Q}{(l-x)^{2}} \tag{2}
\end{equation*}
$$

From (1):

$$
Q=q_{2} * \frac{x^{2}}{l^{2}}
$$

Then

$$
\begin{gather*}
\frac{k q_{1}}{l^{2}}=\frac{k q_{2}}{(l-x)^{2}} * \frac{x^{2}}{l^{2}} \\
q_{1}\left(l^{2}-2 x l+x^{2}\right)=q_{2} x^{2} \\
\left(q_{1}-q_{2}\right) x^{2}-2 l q_{1} x+q_{1} l^{2}=0 \\
x=\frac{2 q_{1} l \pm \sqrt{\left(4 q_{1} l^{2}-4 *\left(q_{1}-q_{2}\right) q_{1} l^{2}\right)}}{2\left(q_{1}-q_{2}\right)} \\
x= \begin{cases}1.5 m & (1) \\
\frac{3}{4} m & (2)\end{cases} \tag{1}
\end{gather*}
$$

The first solution is not between the charges, so we chose

$$
x=\frac{3}{4} m
$$

Then

$$
Q=q_{2} * \frac{x^{2}}{l^{2}}=0.005625 C
$$

Answer:

$x=\frac{3}{4} m, Q=q_{2} * \frac{x^{2}}{l^{2}}=0.005625 C$
Answer provided by https://www.AssignmentExpert.com

