Answer on Question \#67025, Physics / Optics

Light from a mercury lamp falls on two slits separated by 0.6 mm , and the resulting interference pattern is observed on a screen 2.5 m away from the slits. If the adjacent bright fringes are separated by 2.27 mm , what is the wavelength of the light?

Find: λ - ?

Given:

$\mathrm{d}=0.6 \times 10^{-3} \mathrm{~m}$
$\mathrm{L}=2.5 \mathrm{~m}$
$\Delta x=2.27 \times 10^{-3} \mathrm{~m}$
$\mathrm{n}=1.0$

Solution:

S_{1} and S_{2} are the point sources
d is the distance between S_{1} and S_{2}
Zero interference maximum is in point O_{1}.
L is the distance between the point sources and screen
Choose on screen the point M, where there is a dark line.
Dark line responsible the interference minimum.
Condition of interference maximum:
$\mathrm{n} \Delta \mathrm{r}=\mathrm{k} \lambda(1)$,
where Δr is the geometric difference at which the waves come to the point M from S_{1} and S_{2}, n is the absolute index of refraction, λ is the wavelength of light, $k=0, \pm 1, \pm 2, \ldots$ (the number of minimum)

From Figure \Rightarrow the similarity of triangles (by two angles):
$\Delta \mathrm{OO}_{1} \mathrm{M} \sim \Delta \mathrm{S}_{1} \mathrm{NS}_{2}$
$\frac{\mathrm{S}_{1} \mathrm{~S}_{2}}{\mathrm{MO}}=\frac{\mathrm{S}_{2} \mathrm{~N}}{\mathrm{O}_{1} \mathrm{M}}$ (2)
Of (2) and Figure $\Rightarrow \frac{\mathrm{d}}{\mathrm{MO}}=\frac{\Delta \mathrm{r}}{\mathrm{x}}(3)$
Since $d \ll L$, then $M O \approx L(4)$
(4) in (3): $\frac{d}{L}=\frac{\Delta r}{x}(5)$

Of (5) $\Rightarrow \Delta r=\frac{\mathrm{d}}{\mathrm{L}} \mathrm{x}(6)$
(6) in (1): $n \frac{d}{L} x_{k}=k \lambda$ (7)

Of (7) $\Rightarrow X_{k}=\frac{\mathrm{k} \lambda \mathrm{L}}{\mathrm{nd}}$ (8)
Of (7) $\Rightarrow \mathrm{x}_{\mathrm{k}+1}=\frac{(\mathrm{k}+1) \mathrm{\lambda L}}{\mathrm{nd}}$ (9)
$\Delta \mathrm{x}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}}$ (10)
(8) and (9) in (10): $\Delta x=\frac{\lambda L}{n d}$ (11)

Of (11) $\Rightarrow \lambda=\frac{\mathrm{nd} \Delta \mathrm{x}}{\mathrm{L}}$ (12)
Of (12) $\Rightarrow \lambda=544.8 \times 10^{-9} \mathrm{~m}$

Answer:

$544.8 \times 10^{-9} \mathrm{~m}$

