Answer on Question #67025, Physics / Optics

Light from a mercury lamp falls on two slits separated by 0.6 mm, and the resulting interference pattern is observed on a screen 2.5 m away from the slits. If the adjacent bright fringes are separated by 2.27 mm, what is the wavelength of the light?

Find: $\lambda - ?$ Given: d=0.6×10⁻³ m L=2.5 m Δx =2.27×10⁻³ m n=1.0

Solution:

 S_1 and S_2 are the point sources

d is the distance between $S_1 \, \text{and} \, S_2$

Zero interference maximum is in point O₁.

L is the distance between the point sources and screen

Choose on screen the point M, where there is a dark line.

Dark line responsible the interference minimum.

Condition of interference maximum:

 $n\Delta r = k\lambda$ (1),

where Δr is the geometric difference at which the waves come to the point M from S₁ and S₂, n is the absolute index of refraction, λ is the wavelength of light, k=0, ±1, ±2, ... (the number of minimum) From Figure \Rightarrow the similarity of triangles (by two angles):

 $\Delta 00_1 M{\sim} \Delta S_1 NS_2$

$$\frac{S_1S_2}{MO} = \frac{S_2N}{O_1M} (2)$$
Of (2) and Figure $\Rightarrow \frac{d}{MO} = \frac{\Delta r}{x} (3)$
Since d<\approx L (4)
(4) in (3): $\frac{d}{L} = \frac{\Delta r}{x} (5)$
Of (5) $\Rightarrow \Delta r = \frac{d}{L}x (6)$
(6) in (1): $n\frac{d}{L}x_k = k\lambda$ (7)
Of (7) $\Rightarrow x_k = \frac{k\lambda L}{nd} (8)$
Of (7) $\Rightarrow x_{k+1} = \frac{(k+1)\lambda L}{nd} (9)$
 $\Delta x = x_{k+1} - x_k (10)$
(8) and (9) in (10): $\Delta x = \frac{\lambda L}{nd} (11)$
Of (11) $\Rightarrow \lambda = \frac{nd\Delta x}{L} (12)$
Of (12) $\Rightarrow \lambda = 544.8 \times 10^{-9}$ m
Answer:

544.8×10⁻⁹ m

Answer provided by https://www.AssignmentExpert.com