Answer on Question 66882, Physics, Mechanics, Relativity

Question:

A truck of mass 2000 kg moving on a highway experiences an average frictional force of 800 N . If it's speed increases from $25 \mathrm{~ms}^{-1}$ to $35 \mathrm{~ms}^{-1}$ over a distance of 500 m , what is the force generated by the truck?

Solution:

Let's first apply the Newton's Second Law of Motion:

$$
\begin{gathered}
\sum F_{x}=m a_{x} \\
F_{t r u c k}-F_{f r}=m a
\end{gathered}
$$

here, $F_{\text {truck }}$ is the force generated by the truck, $F_{f r}$ is the force of friction, m is the mass of the truck and a is the acceleration of the truck.

Then, from this formula we can find the force generated by the truck:

$$
F_{t r u c k}=F_{f r}+m a(1) .
$$

We can find the acceleration of the truck from the kinematic equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a d,
$$

here, v_{i} is the initial speed of the truck, v_{f} is the final speed of the truck, a is the acceleration of the truck and d is the distance. Then, we get:

$$
a=\frac{v_{f}^{2}-v_{i}^{2}}{2 d}=\frac{\left(35 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(25 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 500 \mathrm{~m}}=0.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

Substituting the acceleration of the truck into the equation (1), we get:

$$
F_{\text {truck }}=F_{f r}+m a=800 \mathrm{~N}+2000 \mathrm{~kg} \cdot 0.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=2000 \mathrm{~N} .
$$

Answer:

$F_{\text {truck }}=2000 \mathrm{~N}$.
Answer provided by https://www.AssignmentExpert.com

