Answer on Question \#66877-Physics-Classical Mechanics

a solid cylinder of mass 3.0 kg and radius 1.0 m is rotating about its axis with a speed of 40 rad per second. Calculate the torque which must be applied to bring it to rest in 10 seconds . what would be the power required

Solution

The Newton's second law for rotation motion

$$
M=J \frac{\Delta \omega}{\Delta t}
$$

Here M is torque, $J=\frac{m R^{2}}{2}$ - moment of inertia of a solid cylinder.
So

$$
\begin{gathered}
M=\frac{m R^{2}}{2} \frac{\Delta \omega}{\Delta t} \\
=\frac{3 \times 1^{2}}{2} \frac{40-0}{10} \\
=6 \mathrm{~N} \cdot \mathrm{~m} .
\end{gathered}
$$

The power would be required

$$
\begin{gathered}
P=\frac{\text { Work done }}{\text { time }}=\frac{\frac{J \omega^{2}}{2}}{t}=\frac{m R^{2} \omega^{2}}{4 t} \\
=\frac{1 \times 1^{2} \times 40^{2}}{4 \times 10} \\
=40 \mathrm{~W} .
\end{gathered}
$$

Answer: $M=6 \mathrm{~N} \cdot \mathrm{~m}, P=40 \mathrm{~W}$.
Answer provided by https://www.AssignmentExpert.com

