An electron moving parallel to the x-axis has an initial speed of $3.70 \times(10)^{\wedge} 6 \mathrm{~m} / \mathrm{s}$ at the origin. It's speed is reduced to $1.40 \times(10)^{\wedge} 5 \mathrm{~m} / \mathrm{s}$ at the point $\mathrm{x}=2 \mathrm{c} . \mathrm{m}$-calculate the electric potenial difference between the origin and that point?

Find: $v_{E}-$?

Given:

$\mathrm{v}_{0}=3.7 \times 10^{6} \mathrm{~m} / \mathrm{s}$
$v=1.4 \times 10^{5} \mathrm{~m} / \mathrm{s}$
$\mathrm{x}=0.02 \mathrm{~m}$
$e=-1.6 \times 10^{-19} \mathrm{C}$
$\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$

Solution:

The changing of the kinetic energy of electron:
$\mathrm{W}=\frac{\mathrm{mv}_{0}^{2}}{2}-\frac{\mathrm{mv}^{2}}{2}(1)$,
where m is the mass of electron
The electric field performs work:
$A=F x(2)$,
where F is the electric forse, x is the displacement of electron
Electric forse:
$F=v_{E}|e|(3)$,
where v_{E} is the electric potenial, e is electron charge
(3) in (2):
$A=v_{E}|e| x(4)$
The changing of kinetic energy of electron is equal to work of electric field:
$\frac{m v_{0}^{2}}{2}-\frac{m v^{2}}{2}=v_{E}|e| x(5)$
Of (5) $\Rightarrow v_{E}=\frac{\frac{m_{0}^{2}}{2}-\frac{m v^{2}}{2}}{|e| x}(6)$
Of (6) $\Rightarrow \mathrm{V}_{\mathrm{E}}=1.9 \times 10^{-7} \mathrm{~N} / \mathrm{C}$

Answer:

$1.9 \times 10^{-7} \mathrm{~N} / \mathrm{C}$
Answer provided by https://www.AssignmentExpert.com

