Answer on Question #66811, Physics / Electromagnetism

An electron moving parallel to the x-axis has an initial speed of $3.70\times(10)^6$ m/s at the origin. It's speed is reduced to $1.40\times(10)^5$ m/s at the point x=2c.m -calculate the electric potential difference between the origin and that point?

Find: $v_E - ?$

Given:

 $v_0=3.7\times10^6 \text{ m/s}$

 $v=1.4\times10^5 \text{ m/s}$

x=0.02 m

e=-1.6×10⁻¹⁹ C

 $m=9.1\times10^{-31} \text{ kg}$

Solution:

The changing of the kinetic energy of electron:

$$W = \frac{mv_0^2}{2} - \frac{mv^2}{2}$$
 (1),

where m is the mass of electron

The electric field performs work:

$$A = Fx (2),$$

where F is the electric forse, x is the displacement of electron

Electric forse:

$$F = v_E |e| (3),$$

where v_E is the electric potenial, e is electron charge

(3) in (2):

$$A = v_E |e| x (4)$$

The changing of kinetic energy of electron is equal to work of electric field:

$$\frac{mv_0^2}{2} - \frac{mv^2}{2} = v_E|e|x$$
 (5)

Of (5)
$$\Rightarrow$$
 $v_E = \frac{\frac{mv_0^2 - mv^2}{2}}{|e|x|}$ (6)

Of (6)
$$\Rightarrow$$
 v_E=1.9×10⁻⁷ N/C

Answer:

Answer provided by https://www.AssignmentExpert.com