

Answer on Question #66810, Physics / Molecular Physics | Thermodynamics

Using the first law of the thermodynamics for an adiabatic processes, establish the relation $PV^{\gamma-1} = C$ where $\gamma = \frac{C_p}{C_v}$ and C is a constant. Plot this equation on a P-v diagram. What will be its slope?

Solution:

According to the first law of thermodynamics,

$$dU + \delta W = \delta Q = 0 \quad (1)$$

where dU is the change in the internal energy of the system and δW is work done by the system.

Any work (δW) done must be done at the expense of internal energy U , since no heat δQ is being supplied from the surroundings.

Pressure-volume work δW done by the system is defined as

$$\delta W = PdV \quad (2)$$

However, P does not remain constant during an adiabatic process but instead changes along with V .

It is desired to know how the values of dP and dV relate to each other as the adiabatic process proceeds. For an ideal gas the internal energy is given by

$$U = \alpha nRT \quad (3)$$

where α is the number of degrees of freedom divided by two, R is the universal gas constant and n is the number of moles in the system (a constant).

Differentiating Equation (3) and use of the ideal gas law, $PV = nRT$, yields

$$dU = \alpha nRdT = \alpha d(PV) = \alpha(PdV + VdP) \quad (4)$$

Equation (4) is often expressed as $dU = nC_V dT$ because $C_V = \alpha R$.

Now substitute equations (2) and (4) into equation (1) to obtain

$$-PdV = \alpha PdV + \alpha VdP \quad (5)$$

factorize $-P dV$:

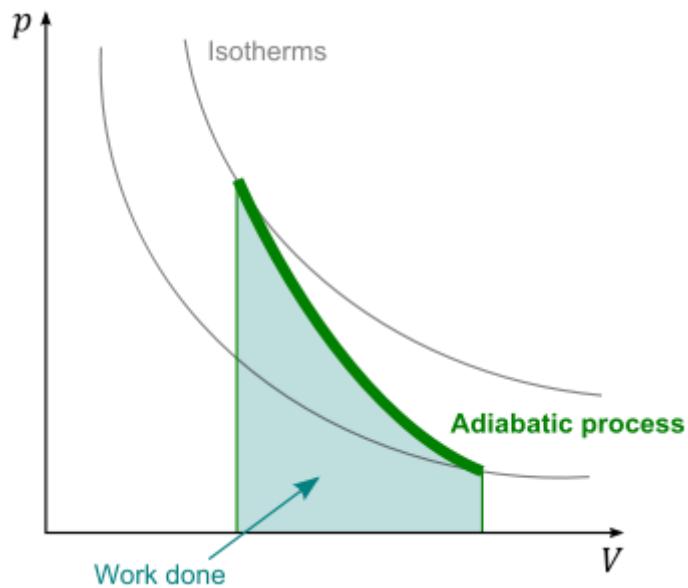
$$-(\alpha + 1)PdV = \alpha VdP \quad (6)$$

and divide both sides by PV :

$$-(\alpha + 1) \frac{dV}{V} = \alpha \frac{dP}{P} \quad (7)$$

After integrating the left and right sides from V_0 to V and from P_0 to P and changing the sides respectively,

$$\ln \frac{P}{P_0} = \frac{\alpha+1}{\alpha} \ln \frac{V}{V_0} \quad (8)$$


$$\text{Of (8)} \Rightarrow \frac{P}{P_0} = \left(\frac{V}{V_0} \right)^{\gamma} \quad (9)$$

$$\text{where } \gamma = \frac{\alpha+1}{\alpha}$$

Therefore,

$$\left(\frac{P}{P_0}\right) \times \left(\frac{V}{V_0}\right)^\gamma = 1 \quad (10)$$

$$\text{Of (10)} \Rightarrow P_0 V_0^\gamma = P V^\gamma = \text{const}$$

Adiabat on PV diagram is a "steep hyperbola",

the slope is a tangent of angle,

tangent of angle for adiabat is greater than tangent of angle for isotherms (adiabat is steeper isotherms)

Answer provided by <https://www.AssignmentExpert.com>