Answer on Question \#66753-Physics-Molecular Physics-Thermodynamics

A sonometer wire having cross sectional area $0.85 \times 1 / 1000000 \mathrm{~m} 2$ is stretched between two rigid supports 1.2 my apart .A tension of 20 N is applied at its free end .if the temperature is reduced by $12^{\circ} \mathrm{C}$, Calculate the field tension in the wire .Take coefficient of linear expansion \& isothermal young's modulus to be $1.5 \times$ $1 / 1000001 / \mathrm{K} \& 2 \times 100000000000 \mathrm{~N} / \mathrm{my}$, respectively.

Solution

$$
\begin{gathered}
\Delta F=-A \gamma \alpha \Delta T \\
\Delta F=\left(0.85 \cdot 10^{-6}\right)\left(2 \cdot 10^{11}\right)\left(1.5 \cdot 10^{-5}\right)(12)= \\
F^{\prime}=F+\Delta F=20+30.6=50.6 \mathrm{~N} .
\end{gathered}
$$

Answer: 50.6 N.
Answer provided by https://www.AssignmentExpert.com

