Answer on Question #66743, Physics / Mechanics | Relativity

Question:

A satellite going around the earth in an elliptical orbit has a speed of 10 km/s at the perigee which is at a distance of 227 km from the surface of the earth. Calculate the apogee distance & its speed at that point.

Solution:

The satellite's speed at the perigee may be calculated according to this formula:

$$v_p = \sqrt{\frac{GM}{r_p}(1+e)}$$
 , where G — gravitational constant (6.674×10⁻¹¹ m³kg⁻¹s⁻²);

M — the Earth's mass $(5.972 \times 10^{24} \text{ kg})$;

 $\it r_p -
m perigee$ distance from the centre of the earth;

e — excentricity of the orbit.

Then
$$e = \frac{v_p^2 r_p}{GM} - 1 = \frac{10000^2 \cdot (6371000 + 227000)}{6.674 \times 10^{-11} \cdot 5.972 \times 10^{24}} - 1 = 0.655$$

In apogee the satellite's speed:

$$v_a = \sqrt{\frac{GM}{r_a}(1-e)}$$
, where r_a — apogee distance from the centre of the earth.

For elliptical orbit the distances r_p and r_a are related as $\frac{r_a}{r_n} = \frac{1+e}{1-e}$, and then

$$r_a = r_p \frac{1+e}{1-e} = (6371000 + 227000) \frac{1+0.655}{1-0.655} = 31651275 \ m$$
.

The apogee distance from the surface of the earth

$$d_a = 31651275 - 6371000 = 25280275 \, m \cong 25280 \, km.$$

$$v_a = \sqrt{\frac{6.674 \times 10^{-11} \cdot 5.972 \times 10^{24}}{31651275}} (1 - 0.655) = 2084 \frac{m}{s} \approx 2.1 \, \text{km/s}$$

Answer:

25280 km

 $2.1 \, km/s$

Answer provided by https://www.AssignmentExpert.com