Answer on Question 66740, Physics, Mechanics, Relativity

Question:

A solid cylinder of mass 3 kg and radius 1.0 m is rotating about its axis with a speed of $40 \mathrm{rad} / \mathrm{s}$. Calculate the torque which must be applied to bring it to rest in 10 second. What would be the power required?

Solution:

a) We can find the torque from the formula:

$$
\tau=I \alpha,
$$

here, I is the moment of inertia of the solid cylinder, α is the angular acceleration of the solid cylinder.

The moment of inertia of the solid cylinder can be found from the formula:

$$
I=\frac{1}{2} m r^{2}
$$

here, m is the mass of the solid cylinder, r is the radius of the solid cylinder.
Then, we get:

$$
I=\frac{1}{2} m r^{2}=\frac{1}{2} \cdot 3 \mathrm{~kg} \cdot(1.0 \mathrm{~m})^{2}=1.5 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

We can find the angular acceleration of the solid cylinder from the kinematic equation:

$$
\omega=\omega_{i}+\alpha t,
$$

here, $\omega_{i}=40 \mathrm{rad} / \mathrm{s}$ is the initial angular speed of the cylinder, $\omega=0 \mathrm{rad} / \mathrm{s}$ is the final angular speed of the cylinder (when the cylinder is bring to rest), α is the angular acceleration of the cylinder and t is the time.

Then, from this formula we can find the angular acceleration of the solid cylinder:

$$
\alpha=\frac{\omega-\omega_{i}}{t}=\frac{0 \frac{\mathrm{rad}}{\mathrm{~s}}-40 \frac{\mathrm{rad}}{\mathrm{~s}}}{10 \mathrm{~s}}=-4 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} .
$$

The sign minus indicates that the cylinder decelerates.

Substituting I and α into the first formula we can calculate the torque which must be applied to bring it to rest in 10 second:

$$
\tau=I \alpha=1.5 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot\left(-4 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}\right)=-6 \mathrm{~N} \cdot \mathrm{~m} .
$$

The sign minus indicates that the torque acting in the opposite direction to the rotation of the cylinder. So, the magnitude of the torque will be $\tau=6 \mathrm{~N} \cdot \mathrm{~m}$.
b) We can find the power required from the formula:

$$
P=\tau \omega
$$

here, P is the power, τ is the torque applied to the cylinder, ω is the angular speed of the cylinder.

Then, we get:

$$
P=\tau \omega=6 \mathrm{~N} \cdot \mathrm{~m} \cdot 40 \frac{\mathrm{rad}}{\mathrm{~s}}=240 \mathrm{~W} .
$$

Answer:

a) $\tau=6 \mathrm{~N} \cdot \mathrm{~m}$.
b) $P=240 \mathrm{~W}$.

